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SUMMARY

An explicit formulation to study nonlinear waves interacting with a submerged body in an ideal fluid of
infinite depth is presented. The formulation allows one to decompose the nonlinear wave–body interaction
problem into body and free-surface problems. After the decomposition, the body problem satisfies a
modified body boundary condition in an unbounded fluid domain, while the free-surface problem satisfies
modified nonlinear free-surface boundary conditions. It is then shown that the nonlinear free-surface
problem can be further reduced to a closed system of two nonlinear evolution equations expanded in
infinite series for the free-surface elevation and the velocity potential at the free surface. For numerical
experiments, the body problem is solved using a distribution of singularities along the body surface and
the system of evolution equations, truncated at third order in wave steepness, is then solved using a
pseudo-spectral method based on the fast Fourier transform. A circular cylinder translating steadily near
the free surface is considered and it is found that our numerical solutions show excellent agreement with
the fully nonlinear solution using a boundary integral method. We further validate our solutions for a
submerged circular cylinder oscillating vertically or fixed under incoming nonlinear waves with other
analytical and numerical results. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nonlinear inviscid calculations for wave–body interaction problems have been predominantly based
on the mixed Eulerian–Lagrangian (MEL) boundary integral approach, originally proposed by
Longuet-Higgins and Cokelet [1]. See, for example, the review by Beck and Reed [2] for the
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1020 C. P. KENT AND W. CHOI

application of a MEL method to wave–body interaction problems, and see Liu et al. [3] for a
recent three-dimensional result. Despite significant improvements over recent decades, the MEL-
type method is still computationally expensive for practical applications and it is desirable to have
a new efficient and accurate numerical scheme.

As an alternative numerical approach to solve wave–body interaction problems, Liu et al. [4]
generalized the higher-order spectral (HOS) method, originally introduced for free wave problems
by Dommermuth and Yue [5]. In this approach, the free-surface boundary conditions are expanded
about the mean free surface and the resulting linear boundary value problems of wave–body
interaction at each order of wave steepness are solved numerically using a pseudo-spectral method
based on the fast Fourier transform (FFT). The free-surface variables such as the free-surface
elevation and the free-surface velocity potential are then updated by solving the nonlinear evolution
equations using a pseudo-spectral method. The HOS method has been also adopted by Liu et al. [6]
and Lin and Kuang [7].

Although the HOS approach has been found to be numerically efficient compared with the
MEL approach, it is still cumbersome because, at every time step, before the free-surface variables
are evolved, one must numerically solve a separate boundary value problem for each order of
nonlinearity. Here, to solve nonlinear wave–body interaction problems more efficiently, we present
an improved formulation which requires one to solve a linear boundary value problem in an
unbounded fluid domain (with no free surface present) only once per time step for any order of
approximation, and provides nonlinear evolution equations, explicitly written to the desired order,
for the free-surface variables defined in the horizontal plane.

Combined with an asymptotic expansion similar to that used by Choi [8] for free wave problems,
it is shown that the wave–body interaction problem can be decomposed into the body problem
satisfying the modified body boundary condition on the instantaneous body surface in an unbounded
domain and the free-surface problem that is reduced to solving a closed set of nonlinear evolution
equations for the free-surface variables written in infinite series. The body problem is then solved
numerically using a distribution of singularities, while the explicit evolution equations are solved
using a pseudo-spectral method based on the FFT. In the absence of a body, when written in
Fourier space, the evolution equations are reduced to those of West et al. [9] and, therefore,
the formulation presented here can be regarded as a generalization of that of West et al. [9] for
wave–body interaction problems.

After describing our formulation in Sections 2–4 and numerical method in Section 5, we
present the steady translation as well as the radiation and diffraction problems for a submerged
circular cylinder. Whenever possible, we compare our results with experimental, theoretical or
other numerical results.

2. GOVERNING EQUATIONS

For an ideal fluid of density �, the velocity potential �(x, z, t) for a free-surface flow with a body
present can be found by solving the following nonlinear boundary value problem:

∇2� + �2�
�z2

= 0 for − ∞�z��(x, t) (1)

��

�t
+ ∇�Q∇� = ��

�z
at z = �(x, t) (2)
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��

�t
+ 1

2
|∇�|2 + 1

2

(
��

�z

)2

+ g� = 0 at z = �(x, t) (3)

|∇3�| → 0 as z → −∞ (4)

��

�n
=VQn on SB(t) (5)

where g is the gravitational acceleration, �(x, t) is the free-surface elevation, x= (x, y), and ∇
and ∇3 are the two- and three-dimensional gradients, respectively, defined by

∇=
(

�
�x

,
�
�y

)
, ∇3 =

(
∇,

�
�z

)
(6)

In the body boundary condition (5), V is the velocity of the body surface, n is the normal vector
directed into the body, and SB(t) represents the instantaneous body position. At lateral boundaries,
either zero flux at infinity or periodic boundary conditions can be imposed. Here, we have assumed
that surface tension can be neglected, and that no external pressure is applied to the fluid.

By substituting z = � into (2) and (3), and using the following chain rule for differentiation, the
kinematic and dynamic free-surface boundary conditions can be written in terms of the surface
elevation � and the free-surface velocity potential �≡ �(x, �, t) as

��

�t
+ ∇�Q∇� = (1 + |∇�|2)W (7)

��

�t
+ 1

2
(∇�)2 + g� = 1

2
(1 + |∇�|2)W 2 (8)

If one can find the expression, in terms of the free-surface variables, � and �, for the vertical
velocity evaluated at the free surface, W , defined as

W = ��

�z

∣∣∣∣
z=�

(9)

Equations (7)–(8) can be considered a closed system of two coupled evolution equations for these
two free-surface variables. In order to close the system, following West et al. [9], � and W are
expanded in Taylor series about z = 0

�(x, t) =
∞∑
n=0

(−1)n
�2n

(2n)!�
n�0 +

∞∑
n=0

(−1)n
�2n+1

(2n + 1)!�
nw0 (10)

W (x, t) =
∞∑
n=0

(−1)n
�2n

(2n)!�
nw0 +

∞∑
n=0

(−1)n+1 �2n+1

(2n + 1)!�
n+1�0 (11)

where we have used �2�/�z2 = − ∇2�, � = ∇2, and

�0 =�(x, 0, t), w0 = ��

�z
(x, 0, t) (12)

Once the relationship between �0 and w0 is found, as described in Section 3, one can first invert
the series for � given by (10) and then substitute the inverted series for �0 into (11) to obtain the
expression for W in terms of � and �.
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3. DECOMPOSITION OF THE TOTAL VELOCITY POTENTIAL

In order to find the relationship between �0 and w0, both defined at the mean free surface (z = 0),
we consider the following linear boundary value problem:(

∇2 + �2

�z2

)
�= 0 for − ∞<z<0 (13)

�=�0(x, t) at z = 0 (14)

|∇3�| → 0 as z → −∞ (15)

��

�n
=VQn on SB(t) (16)

Note that a simple linear boundary condition (or the definition of �0) is imposed at the mean
free surface in this auxiliary problem since the original free-surface boundary conditions given by
(7)–(8) will be satisfied automatically when the nonlinear evolution equations, with substituting
the expression for W in terms of � and � into (7)–(8), are solved.

To solve (13)–(16), one can further decompose the velocity potential � into

�= �F + �B (17)

where �F and �B are the solutions of the free-surface and body problems, respectively. For the
free-surface problem, we choose to impose a boundary condition at the mean free surface, but no
boundary condition on the body surface for �F; and vice versa in the body problem for �B, as
illustrated in Figure 1. When these two problems are superimposed, the auxiliary problem should
be recovered. Although this choice of the decomposition into the free-surface and body problem
potentials is not unique, an advantage of this decomposition is that the body problem is greatly

SF

SB φ = φF + φB

φF= φo(x,t) - φB(x,0,t)

∞

∞∞

|∇3φ| = 0

|∇3φF| = 0 |∇3φB| = 0

φ = φo(x,t) 

φB = V. n − φF
n n

(a)

(b) (c)

Figure 1. Decomposition of the original problem into the free-surface and body problems: (a) original
problem; (b) free-surface problem; and (c) body problem.
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NONLINEAR SURFACE WAVES INTERACTING WITH A SUBMERGED BODY 1023

simplified to one in an unbounded domain which can be easily solved. Another alternative, for
example, is to impose a simple free-surface boundary condition for the body problem, e.g. �B = 0
at z = 0, so that the free-surface boundary condition becomes simpler (�F = �0 at z = 0) in the
free-surface problem, as used in Choi and Kent [10].
3.1. Free-surface velocity potential

With the decomposition shown in Figure 1, the free-surface velocity potential �F is the solution
of the following boundary value problem:(

∇2 + �2

�z2

)
�F = 0 for − ∞<z<0 (18)

�F =�0(x, t) − �B(x, 0, t) at z = 0 (19)

|∇3�
F| → 0 as z → −∞ (20)

where �0 is the velocity potential at the mean free surface defined by (12), and the body velocity
potential �B is the solution of the body problem. By using the Fourier transform defined by

�F(k, z, t) ≡
∫ ∞

−∞
�F(x, z, t) eikQx dx (21)

where k= (k1, k2), the solution of (18)–(20) in the transformed plane can be found as

�F = (�0(k, t) − �B(k, 0, t)) ekz (22)

where k = (k12 + k22)1/2. Then, the Fourier transform of the total vertical velocity at the mean
position w0(x, t) can be written as

w0(k, t) = ��F

�z

∣∣∣∣∣
z=0

+ ��B

�z

∣∣∣∣∣
z=0

= k�0 + f B (23)

and its inverse transform yields the relationship between w0 and �0 as

w0(x, t) =−L[�0] + f B(x, t) (24)

In (24), the linear integral operator L [8] is defined as

L[�] = 1

2�

∫ ∫ ∞

−∞
(x′ − x)Q∇�

|x′ − x|3 dx ′ dy′ (25)

or, when acting on a Fourier component, as

L[eikQx] = −|k| eikQx (26)

and f B represents the effects of the body potential at the mean free surface as

f B(x, t) = ��B

�z

∣∣∣∣∣
z=0

+ L[�B]|z=0 (27)

which can be computed after solving the body problem, as described below.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:1019–1038
DOI: 10.1002/fld
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3.2. Body velocity potential

By subtracting (18)–(20) from (13)–(16), the body problem for �B is defined by(
∇2 + �2

�z2

)
�B = 0 for − ∞�z�0 (28)

|∇3�
B| → 0 as z → −∞ (29)

��B

�n
=VQn − ��F

�n
on SB(t) (30)

where �F(x, z, t) is given by (22) for known �0(x, t) (see also Equation (56)). Compared with
the original governing equations given by (1)–(5), there are a couple of unique features in this
form of the body problem. First, the body velocity potential can be obtained by solving a linear
problem in an unbounded domain. Secondly, since the domain of interest is unbounded, there is
no need to introduce free-surface Green functions, whose evaluation is computationally expensive.
The solution of (28)–(30) can be found by various methods including a distribution of singularities,
Green’s identity, the multipole expansion method, etc. For example, �B can be represented by a
distribution of singularities as

�B(x, z, t) =
∫
SB

�(x′, t)G(x, x′, z, z′) dS′ (31)

where � is determined by imposing the body boundary condition (30) at the instantaneous body
position, and the Green function G(x′, x) for three-dimensional flows is given by

G = − 1

4�

1

[|x − x′|2 + (z − z′)2]1/2 (32)

representing the velocity potential for a source located at (x′, z′). For two-dimensional flows, the
Green function for a source at (x ′, z′) is given by

G = 1

4�
ln[(x − x ′)2 + (z − z′)2] (33)

4. EVOLUTION EQUATIONS FOR THE FREE-SURFACE VARIABLES

After solving the body problem for �B and evaluating f B(x, t), defined by (27), the relationship
between �0 and w0 can be obtained from (24) and, then, W can be expressed in terms of � and
� from (10)–(11) by following the method described by Choi et al. [11] for free waves in the
absence of a body.

After writing the Taylor series expansion for � given by (10) in the form of

�=
∞∑
n=0

An[�0] +
∞∑
n=0

�n[ f B] (34)
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NONLINEAR SURFACE WAVES INTERACTING WITH A SUBMERGED BODY 1025

where operators An and �n are defined by, for even n = 2m,

A2m = (−1)m
�2m

(2m)!�
m, �2m = 0 for m = 0, 1, 2, . . . (35)

for odd n = 2m + 1,

A2m+1 = (−1)m+1 �2m+1

(2m + 1)!�
mL

�2m+1 = (−1)m
�2m+1

(2m + 1)!�
m for m = 0, 1, 2, . . .

(36)

one can find, by direct inversion, that

�0 =
∞∑
n=0

Bn[�] +
∞∑
n=0

�n[ f B] (37)

where operators Bn and �n can be found by the following recursion formulae:

B0 = 1, Bn =−
n−1∑
j=0

An− jB j for n�1, �n = −
n∑
j=0

Bn− j� j (38)

Then, by substituting (37) into the series expansion for W given by

W =
∞∑
n=0

Cn[�0] +
∞∑
n=0

�n[ f B] (39)

where operators Cn and �n are defined by

C2m = (−1)m+1 �2m

(2m)!�
mL, �2m = A2m for n = 2m (m = 0, 1, 2, . . .) (40)

C2m+1 = (−1)m+1 �2m+1

(2m + 1)!�
m+1, �2m+1 = 0 for n = 2m + 1 (m = 0, 1, 2, . . .) (41)

W can be expressed in terms of � and � as

W =
∞∑
n=0

Dn[�] +
∞∑
n=0

	n[ f B] (42)

where operators Dn and 	n are defined by

Dn =
n∑
j=0

Cn− jB j , 	n = �n +
n∑
j=0

Cn− j� j (43)
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Finally, by substituting (42) into the free-surface boundary conditions given by (7)–(8), one can
find the exact evolution equations for � and �

��

�t
= Q(�, �) ≡

∞∑
n=1

Qn(�, �) (44)

��

�t
= R(�, �) ≡

∞∑
n=1

Rn(�, �) (45)

where Qn and Rn are given by

Q1 =D0[�] + 	0[ f B]
Q2 = −∇�Q∇� + D1[�] + 	1[ f B]
Qn =Dn−1[�] + 	n−1[ f B] + |∇�|2(Dn−3[�] + 	n−3[ f B]) for n�3

(46)

R1 = −g� R2 =− 1
2 |∇�|2 + 1

2 (D0[�] + 	0[ f B])2

R3 = (D0[�] + 	0[ f B])(D1[�] + 	1[ f B])

Rn = 1

2

n−2∑
j=0

(Dn− j−2[�] + 	n− j−2[ f B])(D j [�] + 	 j [ f B])

+1

2
|∇�|2

n−4∑
j=0

(Dn− j−4[�] + 	n− j−4[ f B])(D j [�] + 	 j [ f B]) for n�4 (47)

Note that, since Dn[�] = O(
n+1) and 	n[ f B] = O(
n+1), both Qn and Rn are O(
n), where 
 is
the wave slope defined by 
= a/�. In the absence of a body ( f B ≡ 0), system (44)–(45) can be
reduced, when written in the Fourier space, to that for free waves presented in West et al. [9]. For
numerical computations, Q and R need to be approximated by truncated series and here the first
three approximations will be shown explicitly.

4.1. Linear approximation

For 
� 1, by approximating Q and R as Q 	 Q1 and R 	 R1, Equations (44)–(45) can be reduced
to the first-order equations

��

�t
+ L[�] = f B,

��

�t
+ g� = 0 (48)

which can be combined into a single equation for �

�2�
�t2

− gL[�] = − f B (49)

4.2. Second-order approximation

By introducing � defined by

�(x, t) =L[�] − f B(x, t) (50)
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and retaining the first two terms of Q and R, the second-order equations can be written as

��

�t
+ � + ∇Q(�∇�) + L[��] = 0 (51)

��

�t
+ g� + 1

2
∇�Q∇� − 1

2
�2 = 0 (52)

4.3. Third-order approximation

Similarly, by neglecting the terms higher than O(
3), the evolution equations correct to third order
in wave steepness can be written as

��

�t
+ � + ∇Q(�∇�) + L[��] + ∇2

(
1

2
�2�

)
+ L

[
�L[��] + 1

2
�2∇2�

]
= 0 (53)

��

�t
+ g� + 1

2
∇�Q∇� − 1

2
�2 − �(�∇2� + L[��])= 0 (54)

5. NUMERICAL METHOD

Before describing the details of the numerical method, the steps involved at each time step can
be summarized as follows: (1) compute the free-surface velocity potential �F(x, z, tn) to find the
modified body boundary condition given by (30); (2) solve the linear body problem for �B(x, z, tn)
given by (28)–(30); (3) solve the nonlinear evolution equations (44)–(45) to find �(x, tn+1) and
�(x, tn+1).

In the first step, the free-surface variables at t = tn and the body velocity potential at t = tn−1 are
assumed to be known from either initial conditions or the solutions from the previous time step. For
given �(x, tn), �(x, tn), and �B(x, z, tn−1), the velocity potential at the mean free-surface �0(x, tn)
is then computed from (37), which yields, for example, under the third-order approximation

�0 =� + �� + �L[��] + 1
2�

2∇2� (55)

where � =L[�(x, tn)] − f B(x, tn−1) from (50). Note that the body potential from the previous
time step is used to compute f B. This introduces an error of O(�t) with �t being the time-step
size. Alternatively, one could repeat the whole numerical procedure to correct this error but, as
shown later, this error is found to be small. Therefore, unless otherwise specified, the results shown
in this paper are those without any iteration on f B. After �0 is computed, �F can be written, in a
Fourier series, as

�F =
Nx/2∑

n=−Nx/2

Ny/2∑
m=−Ny/2

cnm(t) e|K|z eiKQx (56)

where cnm(t) is the Fourier coefficients of �F(x, 0, tn) approximated by �0(x, tn)−�B(x, 0, tn−1)

and is computed by double FFT. In Equation (56), Nx and Ny are the numbers of Fourier modes
in the x- and y-directions, respectively, and K= (nk1,mk2), where k1 = 2�/L1 and k2 = 2�/L2
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1028 C. P. KENT AND W. CHOI

with L1 and L2 being the computational domain lengths in the x- and y-directions, respectively.
The normal derivative of the free-surface velocity potential on the body surface (∇�F · n on SB)
is then computed to find the modified body boundary condition given by (30).

In the second step, with the modified body boundary condition found in the first step, the linear
boundary value problem is solved for �B(x, z, tn) given by (28)–(30) using the method of a source
distribution given by (31). In this paper, to approximate integral (31), we use a desingularized
method [12], where point sources are distributed at discrete points (x′

j , z
′
j ) displaced slightly into

the body in the normal direction from collocation points on the body surface. Here, the offset
distance is chosen the average of the two distances between the collocation point and its two
neighbours. Then, �B is written as

�B(x, z) =
NB∑
j=1

� j G(x, x′
j , z, z

′
j ) (57)

where NB is the number of sources to represent the body. In (57), the Green function G is a
periodic array of the source potentials given by (32) or (33) for three- or two-dimensional bodies,
respectively. While the explicit form of the two-dimensional source potential in a periodic domain
is known [13, Section 13.71] as

G = 1

4�
ln

[
1

2
cosh

(
2�(z − z′)

L

)
− 1

2
cos

(
2�(x − x ′)

L

)]
(58)

where (x ′, z′) is the location of a source and L is the length of the periodic domain, the peri-
odic three-dimensional source potential has to be computed numerically [14]. Imposing the body
boundary condition (30) at the collocation points yields a system of linear algebraic equations for
source strength � j , which is solved numerically using LU decomposition.

In the final step, the evolution equations (53)–(54) are solved for �(x, tn+1) and �(x, tn+1) after
evaluating �(x, tn) using the new body potential at t = tn found in the second step. To solve the
system of equations given by (53)–(54), a pseudo-spectral method is used and the free-surface
elevation � and the free-surface velocity potential � are represented in truncated Fourier series

�(x, t) = ∑
n

∑
m
anm(t) eink1x+imk2y, �(x, t) = ∑

n

∑
m
bnm(t) eink1x+imk2y (59)

Then, all the linear operations are evaluated in the Fourier space, while the product between two
functions for the nonlinear terms in the evolution equations will be computed in the physical space.
For example, the two linear operators (∇ and L[ ]) are evaluated in the Fourier space as

∇(anm(t) eiKQx) = iKanm(t) eiKQx, L[anm(t) eiKQx] = −|K|anm(t) eiKQx (60)

In order to integrate the evolution equations in time, the fourth-order Runge–Kutta (RK4) scheme or
the explicit third-order Adams–Bashforth (AB3) scheme are used with a time step of approximately
5% of the Courant–Fredrichs–Lewey limit. Initial conditions at t = 0 for the case of a body in
motion are �(x, 0) = 0 and �(x, 0) = 0, since its motion starts from rest, while those for the incident
free wave case are exact travelling wave solutions. The details of the numerical method to solve
the evolution equations including the numerical beach to absorb waves propagating towards the
computational boundaries and a numerical filter to eliminate instability due to aliasing error can
be found in Kent [15].

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:1019–1038
DOI: 10.1002/fld
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The hydrodynamic force on the body is calculated by numerically integrating, using the trape-
zoidal rule, the dynamic pressure on the body SB(t) given by

p=−�

(
��

s�t
+ 1

2
|∇3�|2

)
(61)

which can be rewritten as

p=−�

[
�(�|SB)

�t
− VQ∇3� + 1

2
∇3�Q∇3�

]
(62)

where �|SB =�B|SB + �F|SB is the total velocity potential evaluated at the instantaneous body
position. The chain rule for differentiation has been used to rewrite the time derivative of the
velocity potential, which is evaluated using a first-order backward difference scheme.

For this method, the operation count per time step is O(NF log NF + NBNF) where NF is the
number of points on the free surface and NB is the number of points on the body, and remains
constant regardless of body motion, as demonstrated in Section 6.

While we were unable to compare computation times directly with other numerical methods,
the differences between them and our method can be summarized as follows. A MEL-type method
would have O((NB + NF)

2) operations per time step, mostly due to the evaluation of all the
interaction terms between singularities. Though the computational cost of MEL methods can be
decreased using numerical approximations, such as multipole acceleration [2], it is inherently a
more computationally expensive approach. The MEL method does allow the capture of a breaking
wave up to the point of jet re-entry, which is not possible using the present method or a HOS
method due to the assumption of a single-valued function of the horizontal coordinate. It should
be noted that once the jet does re-enter, MEL computations cannot continue unless an artificial
numerical technique to suppress the wave breaking is applied.

The original HOS method of Liu et al. [4] has an operation count of O(NF log NF + NBNF)

per time step after an initial set-up cost of O(NBNF log NF + N 2
BNF). This count appears identical

to that for the current approach, but there are several more steps involved in the HOS method:
for example, in the HOS method, the boundary value problem (BVP) is set up for points for both
the body and the free surface while in the current approach the BVP is only solved on the body
where only a small number of collocation points are located. This certainly leads to a much smaller
matrix to be evaluated. Also, for the original HOS approach, the whole BVP is solved for each
order of nonlinearity, while in our approach, because of the decomposition, we only need to solve
for the body potential once per time step. Finally, in the case where the body is moving relative
to the free surface and one wishes to capture the motion exactly, the HOS computational cost
increases to O(NBNF log NF + N 2

BNF) due to the fact that the set-up step is required at each time
step to take into account the change in geometry.

6. NUMERICAL RESULTS

To validate our formulation and numerical method, a two-dimensional flow with a submerged
cylinder is considered and our numerical solutions of the one-dimensional version of our system
of evolution equations given by (53)–(54) are compared with available analytical and numerical
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solutions obtained previously. Although we could include an arbitrary order of nonlinearity, we
present numerical solutions valid to the third order in wave steepness in this paper.

6.1. Translating submerged circular cylinder

First, we consider a steadily translating circular cylinder in a frame of reference moving with
the cylinder, but, as shown in Havelock [16] for an instantaneously created steadily translating
pressure, the convergence to a steady state is slow. To avoid this slow convergence, the speed of
the moving reference frame is smoothly accelerated up to the final constant speed using

Ua(t) =

⎧⎪⎨
⎪⎩
U

[
1 − cos2

(
�t

2T

)]
, t<T

U, t�T

(63)

This acceleration scheme decreases the size of the slow oscillation of wave amplitude in time and
forces the system to approach the steady-state quickly.

Figures 2–4 show the free-surface elevation due to a circular cylinder of radius D/R = 5 moving
with speeds U/(gD)1/2 = 0.4, 0.8, 1.2, where D is the submergence depth of its centre. For the
numerical results presented in Figures 2–4, a resolution of NF ≈ 32 points/wavelength is used to
solve the evolution equations (53)–(54) and the number of sources for the body problem is NB = 40,
which are distributed evenly along the circumference. It is found that the numerical solutions for
the third-order evolution equations at large times show excellent agreement with the fully nonlinear
steady solutions of Scullen and Tuck [17] found numerically using a boundary integral method
with a higher resolution, where NF ≈ 70/wavelength on the free surface and NB = 128 on the body
surface. The second-order solutions compare well with the higher-order solutions for both small
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Figure 2. Free-surface elevation of a steadily translating circular cylinder of radius D/R = 5 with
U/

√
gD = 0.4. The third-order solution (—–) is compared with the first- (– –) and second- (- · -)
order solutions as well as the fully nonlinear numerical solution of Scullen and Tuck [17] (�).
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Figure 3. Free-surface elevation of a steadily translating circular cylinder of radius D/R = 5 with
U/

√
gD = 0.8. The third-order solution (—–) is compared with the first- (– –) and second- (- · -)
order solutions as well as the fully nonlinear numerical solution of Scullen and Tuck [17] (�).
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Figure 4. Free-surface elevation of a steadily translating circular cylinder of radius D/R = 5 with
U/

√
gD = 1.2. The third-order solution (—–) is compared with the first- (– –) and second- (- · -)
order solutions as well as the fully nonlinear numerical solution of Scullen and Tuck [17] (�).

and large depth Froude numbers. For the intermediate depth Froude number of U/(gD)1/2 = 0.8,
the wave amplitude is relatively large and the second-order solution becomes a poor approximation.
For the case of U/(gD)1/2 = 0.4 and 0.8, one can still observe a large error in the linear solution
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Table I. Average computational time per time step (T ) on a Intel Pentium 4 (3.2 GHz processor) for the
translating cylinder case with D/R = 5, U/

√
gD= 1.2, for different resolutions and body motions.

Case description T (s) Ratio

NF ≈ 32 points/�, NB = 40, fixed 1.21E−002 Base
NF ≈ 64 points/�, NB = 40, fixed 2.36E−002 1.95
NF ≈ 32 points/�, NB = 80, fixed 2.09E−002 1.72
NF ≈ 64 points/�, NB = 80, fixed 3.96E−002 3.27
NF ≈ 32 points/�, NB = 40, vertical 1.23E−002 1.01
oscillation (A/R = 0.05, �2R/g= 1.0)

when compared with the nonlinear results, verifying the importance of the free-surface nonlinearity
in the steady translation problem of a circular cylinder, as pointed out by Tuck [18].

Table I gives a representative sample of computational times for the U/
√
gD = 1.2 case for

several different combinations of resolutions on the body and free surface. For example, when NF
is increased by a factor of 2 with a fixed NB, the computational time is almost doubled, which
supports our estimated operation count of O(NF log NF + NFNB). In the final case in Table I,
the result of a vertical oscillation (A/R = 0.05, �2R/g= 1.0) has been introduced to show that
the computation cost essentially remains unchanged even if the body is undergoing motion in the
reference frame and the solution is on the exact body surface. There was no discernible difference
in the free-surface elevations between the various resolutions and hence comparison plots are not
presented.

6.2. Oscillating submerged circular cylinder

We now examine the problem of a submerged cylinder undergoing heave or circular motion near
the mean free surface, which has been extensively studied after the pioneering works by Ursell [19]
and Ogilvie [20].

In these numerical computations, the number of points on the body is NB = 40 and the resolution
on the free surface is NF ≈ 32 points/wavelength for both the vertical and the circular motion
problems. Our numerical solutions for a fixed submergence depth are first compared with the
results of Wu [21] who used the linear free-surface boundary conditions but imposed the exact
body boundary condition by expanding the body boundary condition about the mean position of
the body.

To determine the harmonic force coefficients, the hydrodynamic force on the cylinder in the j th
direction is expressed as a Fourier series in time

Fj =Re

{ ∞∑
s=−∞

f j (s)e
is�t

}
(64)

and the force coefficients are obtained as

C j (0) =Re[ f j (0)]/��2�R2A, C j (s) =Re[ f j (s) + f j (−s)]/��2�R2A (65)
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Table II. Vertical force coefficients for a heaving submerged cylinder with A/R = 0.2,
�2R/g= 1.0 and D/R = 3.

Calculation C3(0) C3(1) C3(2) C3(3) C3(4) C3(5) C3(6) C3(7)

Wu [21] −4.9e−03 8.774e−01 1.e−02 5.e−4 0 0 0 0
First order −4.872e−03 8.746e−01 9.895e−03 5.080e−04 2.199e−05 1.098e−06 1.728e−07 1.444e−07
Third order −4.866e−03 8.748e−01 8.500e−03 2.433e−04 3.265e−06 2.697e−07 1.562e−07 1.034e−07

Table III. Vertical force coefficients for a heaving submerged cylinder with A/R = 0.8,
�2R/g= 1.0, and D/R = 3.

Calculation C3(0) C3(1) C3(2) C3(3) C3(4) C3(5) C3(6) C3(7)

Wu [21] −2.05e−02 8.672e−01 4.27e−02 8.8e−03 1.5e−03 3.e−04 0 0
First order −2.034e−02 8.644e−01 4.212e−02 8.636e−03 1.500e−03 2.443e−04 3.846e−05 5.696e−06
Third order −2.002e−02 8.679e−01 3.314e−02 3.989e−03 2.093e−04 1.025e−04 4.805e−05 1.569e−05

Table IV. Vertical force coefficients for a heaving submerged cylinder with A/R = 0.2,
�2R/g= 1.0 and D/R = 1.3.

Calculation C3(0) C3(1) C3(2) C3(3) C3(4) C3(5) C3(6) C3(7)

First order 2.748e−02 5.520e−01 5.680e−02 5.764e−03 3.077e−03 6.260e−04 1.844e−04 4.838e−05
Third order 6.831e−03 4.924e−01 5.408e−02 4.416e−02 1.166e−02 7.646e−03 8.257e−03 6.169e−03

Table V. Horizontal and vertical force coefficients for a submerged cylinder undergoing clockwise circular
oscillations with A/R = 0.6, �2R/g= 0.5, and D/R = 3.

Calculation C1(0) C1(1) C1(2) C1(3) C1(4) C1(5) C1(6) C1(7)

Wu [21] −4.19e−02 8.843e−01 3.92e−02 6.2e−03 9.e−04 1.e−04 0 0
First order −4.128e−02 8.812e−01 3.896e−02 6.191e−03 9.236e−04 1.241e−04 1.511e−05 1.711e−06
Third order −3.937e−02 8.825e−01 3.753e−02 4.072e−03 4.370e−04 3.468e−05 4.007e−06 1.052e−06

Calculation C3(0) C3(1) C3(2) C3(3) C3(4) C3(5) C3(6) C3(7)

Wu [21] −7.0e−03 8.859e−01 3.86e−02 6.2e−03 9.e−04 1.e−04 0 0
First order −6.895e−03 8.828e−01 3.840e−02 6.132e−03 9.182e−04 1.237e−04 1.511e−05 1.648e−06
Third order −8.247e−03 8.824e−01 3.745e−02 4.078e−03 4.434e−04 3.574e−05 3.308e−06 5.677e−07

where � is the frequency of oscillation, R is the radius of the circular cylinder, and A is the
amplitude of the motion. In the results presented here, the cylinder, with centre submergence D,
is allowed to oscillate through two full periods to remove any initial transients and the problem is
assumed to have reached a limit cycle. The force history is then recorded for 32 periods and this
time history is analysed using a Fourier transform for the results in Tables II–V.
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Figure 5. First- (– –) and third-order (—–) free-surface elevations due to a submerged circular cylinder
undergoing clockwise circular oscillations with D/R = 3, �2R/g= 0.5, A/R = 0.6, and t�/2� = 39.

Tables II and III compare the linear and nonlinear results for the force coefficients on a submerged
cylinder undergoing small and large amplitude vertical oscillations. The first-order solutions show
good agreement with Wu’s solutions except in the higher harmonic components which are still
nonzero even in the first-order solutions since the exact body boundary condition is imposed.
The small difference between the two linear solutions in the higher harmonic force coefficients
can be understood from the fact that the full body boundary condition is imposed numerically
in the present method, while Wu’s results are based on a truncated series. As the amplitude of
motion increases, the linear results for the second or higher harmonics are expected to be no
longer accurate and the third-order solutions show the importance of the free-surface nonlinearity,
which has been neglected in Wu’s computations. In general, one can note that the linear solutions
overestimate the vertical force coefficients.

Table IV presents results for a heaving cylinder moving as close as 10% of a radius to the
mean free surface. Unlike the results in Table II, even for small amplitude motion, the mean and
higher harmonic force coefficients are significantly different from the linear results, indicating that
nonlinearity becomes important as the submergence depth decreases.

Table V presents the results for the same circular cylinder undergoing a clockwise circular
motion. Once again, the numerical and analytical linear results show good agreement and the
nonlinear free-surface effects appear at the second harmonic or higher, as expected. Figure 5
shows the first- and third-order free-surface elevations at the end of the computation. As predicted
by the linear theory of Ogilvie [20], the waves travelling to the right are much larger than those
travelling to the left, which is also consistent with the nonlinear predictions of Liu et al. [6]. Note
that, while both the linear and nonlinear computations result in nonsinusoidal wave forms, driven
mostly by large amplitude motions of the cylinder close to the free surface, the development of
higher harmonics is more apparent in the third-order solution.
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6.3. Fixed cylinder beneath incoming waves

The problem of a fixed horizontal cylinder under the free surface with incident waves has been
studied, for example, experimentally by Chaplin [22] and Grue [23], analytically by Ogilvie [20],
Palm [24] and Liu et al. [6] in the frequency domain, and numerically by Liu et al. [4] in the time
domain. Here, the force coefficients on a circular cylinder of radius R with centre submergence
depth D/R = 2 from the undisturbed free surface are computed and compared with the results of
Liu et al. [4] who used a HOS method.

As the initial condition, an exact Stokes wave solution calculated using the method described
by Choi and Camassa [25] is used and, at t = 0+, the body boundary condition is suddenly
enforced. To eliminate any transient response, computations are carried out for 10 wave periods
and the results shown below are obtained from the last three wave periods of computation. The
computational domain on the free surface is 16 incident wavelengths long, with a resolution of 128
points per wavelength and the number of singularities on the body is NB = 40. A higher number
of body points was also attempted, e.g. NB = 256 for one case, but no significant improvement in
the result was observed. The fourth-order Runge–Kutta scheme is used for time integration with
128 time steps per wave period of the incident wave.

The numerical results for two different incoming wave slopes are compared with the previous
results. As shown in Table VI, for kR = 0.4 and ka = 0.08, where k is the wave number and a
is the wave amplitude, the first- and third-order results for the first and second harmonic force
coefficients are in good agreement with the linear result of Ogilvie [20], and the nonlinear results
of Liu et al. [4], respectively. Although the comparison for the mean horizontal force over one
period, f1(0), seems to be reasonable in this comparison, the computation shows the mean value
is sensitive to the sampling period and varies with the initial time for sampling. This is contrary
to what Liu et al. [4] reported, but the source of this discrepancy is not clearly understood yet. To
ensure that the error introduced when using the body velocity potential (�B) at the previous time
step to compute �0 (see Equation (55)) is small and is not the cause of the variation in the mean
drift force, a new calculation for the case shown in Table VI is carried with one or two iterations
on �B whenever the modified body boundary condition is computed. The errors on the harmonic
force coefficients are found to be less than 1%, while the same fluctuation in the drift force with
the error of less than 5% is observed.

Another case computed is for a longer and larger wave of kR = 0.206 and ka 	 0.099, or
equivalently Kc = 1.0, where the Keulegan–Carpenter number Kc is defined by

Kc = �a

R
e−kD (66)

Table VI. Horizontal force coefficients for a submerged circular cylinder in incident Stokes waves with
D/R = 2, kR = 0.4, and ka = 0.08.

Ogilvie [20] Liu et al. [4] Present (first order) Present (third order)

f1(1)/(�gRa) 1.15 1.1406 (first order) 1.1554 1.1342
f1(2)/(�ga2) — 0.2754 (second order) — 0.2919
f1(0)/(�gk2a4) — −1.0561 (fourth order) — −0.9910
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Table VII. Horizontal force coefficients for a submerged circular cylinder in incident
Stokes waves with D/R = 2, kR = 0.206, and Ka = 0.099 (or Kc = 1.0).

Chaplin [22] Liu et al. [4] Present method
Experiment Fourth order Third order

f1(1)/(��2R3Kc) 1.5 2.275 2.2167
ln( f1(2)/(��2R3)) −1.5 −1.0 −1.0788
ln( f1(3)/(��2R3)) −2.6 −2.5 −2.4181

for which both the experimental results of Chaplin [22] and the numerical results of Liu et al. [4]
are available. As shown in Table VII, the present results agree well with the previous numerical
results of Liu et al. [4], but exhibits the same error on the first harmonic force coefficient when
compared to Chaplin [22], which can be attributed to viscous effects [4, 22].

7. DISCUSSION

An explicit nonlinear formulation to solve unsteady wave–body interaction problems in an ideal
fluid of infinite depth has been presented. After decomposing the total velocity potential into the
body and free-surface velocity potentials, it has been shown that the body velocity potential can
be found by solving the simplified boundary value problem in an unbounded fluid domain, while
the free-surface problem is reduced to a system of two coupled nonlinear evolution equations.
This system is then solved using an efficient pseudo-spectral method to update the free-surface
elevation and the total velocity potential at the free surface, while the simplified body problem
is solved using a desingularized boundary integral method. Numerical solutions for a submerged
circular cylinder have been presented to demonstrate the capability of our method to solve the
translation, radiation, and diffraction problems. The results were validated against other theoretical
or numerical results, showing good agreement.

Advantages of the formulation presented here compared with other approaches can be sum-
marized as follows. First, it is necessary to solve the linear body problem in an unbounded
domain only once per time step, regardless of the order of free-surface nonlinearity to be in-
cluded in the free surface. Secondly, after the body velocity potential is found, the system of
two evolution equations is explicitly written in terms of two free-surface variables and, there-
fore, there are no extra numerical steps to close the system before updating the free-surface
information.

In this paper, only results for the two-dimensional wave–body interaction problem in infinitely
deep water have been presented, but the formulation and the numerical method can be readily
applied to solve more general problems. For example, the finite water depth effects can be easily
incorporated in our formulation, as described in the Appendix. For a three-dimensional body,
the numerical evaluation of the doubly periodic source potential is required and this could be
efficiently carried out, for example, using the Ewald summation [14, 26] developed to compute
the Coulomb potential for a lattice of point charges. Although it is not discussed in this work
and further improvements are desirable, it is shown in Kent [15] that the method can be readily
extended to surface piercing bodies. These improvements are underway and will be presented in
the future.
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APPENDIX A: FINITE WATER DEPTH

Though not explicitly considered in this paper, the generalization of our formulation to constant
finite water depth is straightforward. The evolution equations remain unchanged when the linear
operator L (defined in Equation (26) for the infinite depth case) is redefined, when acting on a
Fourier component, as

L[eikQx] = −k tanh(kh) eikQx (A1)

where h is the water depth. When solving the boundary value problem for the body velocity
potential �B, the boundary condition in Equation (29) is replaced by

��B

�z
= 0 at z = −h (A2)

which can be easily satisfied through the use of image potentials. For example, instead of (58),
the Green function G satisfying (A2) can be written as

G = 1

4�
ln

[
1

2
cosh

(
2�(z − z′)

L

)
− 1

2
cos

(
2�(x − x ′)

L

)]

+ 1

4�
ln

[
1

2
cosh

(
2�(z − (−2h − z′))

L

)
− 1

2
cos

(
2�(x − x ′)

L

)]
(A3)

Similarly, the summation defined in Equation (56) is changed to

�F = ∑
n

∑
m
cnm(t)

cosh(|K|(z + h))

cosh(|K|h)
eiKQx (A4)
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